
plate dimensions; n, number of elements on the plate; l{Ui} , trace using a step function of 
a discrete heat source; z, time; ti(T) , $i(z), temperature and overheating of the plate at 
the point of attachment of the j-th element at time r; m, rate of heating of the plate; C, 
total heat!capacity of the structure (plate + elements); @, criterion for uniformity of the 
temperature fielD, equal to the ratio of the average surface temperature of the plate to its 
average volume temperature; o , thermal conductivity from the plate to the medium; Om, Op, 
thermal conductivities from the housing of the element to the medium and into the plate; ~j, 
average surface overheating of the element housing in the nonstationary state; mo, rate of 
heating of the element; Rin , internal thermal resistance between the crystal and the element 
housing. 
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USE OF CLASSICAL STEFAN PROBLEM FOR INITIALIZING SOLUTION 

IN THE NUMERICAL PREDICTION OF FREEZING 

V. M. Gorislavets and V. A. Mitrokhin UDC 536.421.4 

The exact solution of the classical Stefan problem is examined from the point of 
view of using it as an "initial solution" in numerical solutions of appropriate 

problems. 

The classical Stefan problem is taken to mean the self-similar one-dimensional problem 
of freezing or melting of a homogeneous isotropic medium with constant boundary conditions 

[1]. 

The solution of such a problem can be represented in the form 

--- Z 1 Y~ (z, t) = T~, + Tf T~,, err ( 2 (1) 

(0 =  vq-. (3) 

The coefficient of proportionality B, characterizing the velocity of the phase transition 
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No. 5, pp. 847-850, November, 1982. Original article submitted July 7, 1981~ 
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Finding the root of Eqs. (4') and (5'): 

a) T w = +10~ b) T w = --20~ 

front (PTF), is found from a transcendental equation, which can be represented in the follow- 

ing form [2, 3]: 

for freezing 

~2 ) ( ~ 
k~ (T 1 -- T~,) exp k.~ (To - -  TI) exp I " 

4a~ ', 4a~ _ LW V Y  6, (4) 

for melting 

)~2(T,~-- Tflexp - - - - )  k, (T j - -  To) exp ( - - - -  
4a2 \ 4a~ L?z] /~f i .  (5) 

2 

The existence of a positive root of Eqs. (4) and (5) follows from the fact that as B varies 
from zero to 4~ the left side of these equations varies continuously from +co to-do The 
uniqueness of the root follows from the fact that the left sides of these equations are mono- 
tonic functions of B, while the right sides represent a straight line. 

In the final analysis, the solution of Stefan's problem reduces to finding the root of 
Eqo (4) in the case of freezing and Eq. (5) in the case of melting. 

The practical application of the exact solution presented is very restricted. With 
arbitrary changes in the formulation, compared to the self-similar problem, as well as in 
the multidimensional case, it is only possible to obtain a numerical solution [4-6]. 

In its turn, in the numerical solution of Stefan-type problems using the grid method with 
explicit separation of the moveable interface separating the phases, it is necessary to know 
the location of the PTF at a time taken as the initial time and the corresponding temperature 
distribution in both phases. For this purpose the exact solution (1-3) presented above turns 
out to be extremely useful as an "initial solution." 

Taking into account the fact that the process of calculating the left sides of Eqs. (4) 
and (5) presents certain difficulties and that a series of calculations is usually performed 
in a numerical solution, it makes sense to solve Eqs. (4) or (5) using a computer. 

For convenience in the calculation and for generalizing the results obtained on a com- 
puter, we shall introduce the dimensionless variables 

= ~/(2]/-a-~'~), x~ = ~/(2V-~'2), (6) 

Af~ r (TI - -  T~.) V~ C.. (To - -  T~) V'~-2 
- L V 7  w '  Bfr = L V - Y  V~7 '  (7) 

C~(T~- -T j )  ?2 Ct(T 1 - T o )  V~'~ 

1305 



Correspondingly, we put Eqs. (4) and (5) into the form 

Aft . exp (-- x~) Bfr exp (-- x~) 
err (xj erfc (&) 

Araei t exp (-- .v$) Bmelt exp(__ x~) 
erf (x~) erfc (xl) 

(4') 

(5') 

Since the variables xl and xa are related by the relation 

Y o = X 1 g a l / a 2 ,  ( 9 )  

Eqs. (4') and (5') also have a single positive root as xl and xa vary from zero to +~. 

In order to determine the values of the root sought, we used a modified method of suc- 
cessive approximations and in so doing the zeroth approximation was determined graphically 
(Fig. i). 

The principle of the modification used was first formulated by Vegstein and is described 
in [7] for functions with a positive derivative. We used this modification for functions 
with a negative deri~Tative. Very good results are obtained under the condition that the 
zeroth approximation is chosen so that the successive values of functions described by the 
left side of Eqs. (4') or (5') do not go beyond the first quadrant. 

Using the modification indicated we developed an algorithm for solving Eqs. (4') or (5'). 
In the absence of the appropriate mathematical algorithms, the main difficulty in find: ~g the 
roots of (4') and (5') lies in determining the values of Gauss' error function 

2 I e-t~dt" (i0) e f t ( x ) -  ] / ~  

We had to formulate a special program to calculate the integral (i0). In doing so we used the 
algorithm presented in [7]. The values of the integral in the segment 04 x~-~ 2.9 were calcu- 
lated using an expansion of the integrand in a Taylor series 

2 (  x 3 x ~ x 7 ) 
err(x) = - ~  x - -  --1!3 q- 215 3!7 I . . . .  (11) 

In this case, for 04 x ~ 1.2 we considered terms up to the term containing x I~ in Eq. (ii). 
For !.2<x~ 2.9, the terms of the series in (ii) were calculated until the term in the 
series leading to the required accuracy of the calculations was reached. For values x> 2.9, 
we used the asymptotic series 

I o p(--x !xV7 1.3 I. .5 ,.3.5.7 ). (12) 
2:c2 (2xZy (2xDa (2xD~ 

All values of the integral were calculated with an accuracy of four decimal places. The 
results obtained using this algorithm were compared with the corresponding values of erf(x) 
presented in [8]. With some exceptions (disagreement in the fourth decimal place), the re- 
sults of the calculation agreed. 

This program for calculating erf(x) is a subroutine for the program that we developed 
for organizing the initial data [9], the algorithm for which reduces to the following. 

i. Using a special subroutine, the root of Eqs. (4') or (5') is calculated and, the 
corresponding value of the coefficient 8 is calculated from Eqs. (6). 

2. The location of the PTF at time to, taken as the initial time for the calculation, 
is calculated using Eq. (3). 

3. The temperature profile in the zone 0< z< ~(t) is calculated using Eq. (i) for the 
same time. 

4. The temperature profile in the zone z> ~(t), i.e., the zone in which the medium is 
located in the initial aggregate state, is calculated using Eq. (2). The calculation accord- 
ing to (2) terminates when the condition [To--Tv(z , to) I~i0-" is satisfied. 

The program developed for calculating solutions of (1)-(3) with the help of a computer 
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TABLE i. Values of B Satisfying (4) for Freezing of T,4ater 

T:v, ~C 
o 5 1o 15 20 30 

--I 
--2 
--3 
--4 
--5 
--6 
--7 
--8 
--9 
--i0 
--20 
--30 
--40 
--50 
--60 
--70 
--80 
--90 

--I00 

0,00697 
0,00985 
0,01205 
0,01390 
0,01552 
0,01699 
0,01833 
0,01957 
0,02074 
0,02184 
0,03058 
0,03710 
0;04245 
0,04703 
0,05108 
0,05471 
0,05801 
0,06104 
0,06384 

0,00013 
0,00894 
0,01109 
0,01289 
0,01448 
0,01591 
0,01723 
0,01845 
0,01969 
0,02066 
0,02922 
0,03561 
0,04086 
0,04536 
0,04930 
0,0529I 
0,05616 
0,05914 
0,06191 

0,00542 
0,008!4 
0,01023 
0,01200 
0,01355 
0,01495 
0,01624 
0,01743 
0,01855 
0,01960 
0,02799 
0,03425 
0,03940 
0,04383 
0,04773 
0,0512-t 
0,05445 
0,05739 
0,06012 

0,00483 
0,00745 
0,00948 
0,01120 
0,01272 
0,01409 
0,01534 
0,01654 
0,01760 
0,01863 
0,02685 
0,03299 
0,03805 
0,04240 
0,04624 
0,04970 
0,05286 
0,05576 
0,05845 

0,00433 
O,OO685 
0,00882 
0,O1O50 
0,01190 
0,01330 
0,01453 
0,01567 
0,01674 
0,01775 
0,02580 
0,03183 
0,03680 
0,04108 
0.04486 
0,04827 
0,05137 
0,05424 
0,05090 

O, 00355 
{..00585 
0,00769 
0,00927 
0,01067 
u,Oi i94 
0 , 0 1 ' , ; i  i 
~~,01420 
0,01522 
;.,,0i6t9 
0,0:1393 
O, 02975 
0, C,345,'; 
~!, 03870 
U, 04237 
0,04567 
0,04809 
0,05147 
O, ~5.!07 

TABLE 2. Values of g Satisfying 5) for >felting of Ice 

_ T~, c c  

T w, ~ I --0 --5 --I0 --15 --20 30 

I 
2 
3 
'-1 
3 
6 
7 
8 
9 

i0 
20 
30 
40 
50 
60" 
70 
80 
90 

i00 

0,00359 
0,00507 
0,00620 
0,00714 
0,00795 
0,00870 
0,09381 
0,01001 
0,01050 
0,01114 
0,01544 
0,01855 
0,02104 
0,02313 
0,02493 
0,02653 
0,02795 
0,02924 
0,03042 

0,00258 
0,00399 
0,00508 
0,00001 
0,00082 
0,00755 
0,00822 
0,00884 
0,00942 
0,00990 
0,01424 
0,01735 
0,01985 
0,02195 
0,02377 
0,02538 
0,02682 
0,02812 
0,02931 

0,00191 I 0,00148 
0,00319 I 0,00260 
0,00421 0.00354 
0,00509 ] 0,00436 
0,00587 0,00510 
0,00658 0,00577 
0,00723 0,00639 
0,00783 0,00698 
0,00840 0,00753 
0,00893 0,00805 
0,01316 0,01219 
0,01626 0,01526 
0,01876 0,01775 
0,02080 0,01985 
0,02269 0,02168 
0,02430 0,02330 
0,02575 0,02475 
0,02706 0,02607 
0,02826 0,02727 

0,00119 
0.00217 
0,00302 
0,00377 
0,00440 
0,00510 
0,00569 
0,00625 
0,00678 
0,00728 
0,01132 
0,01435 
0,01682 
0.01801 
0,02073 
0,02235 
(1,02381 
0,02513 
0,026;34 

0 {10085 
0 00i60 
t~ ,00229 
0.00293 
O, 00;}52 

~, 00461 
0,0051! 
0,00538 
0,00604 
0,00983 
0,01273 
0,01516 
0,01722 
0,01902 
0,02003 
0,02208 
0,023.tl 
0.02462 

can be used to organize the initial data when analyzing numerically problems involving pre- 
diction of freezing [i0, ii]. 

Since for a very short time interval the solution of the axisymmetrical problem is close 
to the solution of the corresponding two-dimensional problem, in order to obtain the "initial 
solution" in studying the dynamics of freezing (melting) of a medium in pipes or around them 
it is also possible to use the program developed for organizing the initial data. In par- 
ticular~ we used it in solving problems involving the congealing of petroleum products in a 
pipeline when pumping is stopped [9]. 

In its turn, knowning B, it is easy to realize the solution (1)-(3) without using a com- 
puter. In this connection, we calculated on the M-4030 computer the values of B for water 
and ice for different temperature conditions. The results obtained are presented in Tables 
1 and 2. 

NOTATION 

To, initial temperature of the medium; Tf, temperature of the phase transition; t, time; 
~, location of the phase transition front (PTF); Tu, au, temperature and thermal diffusivity 
of the medium in a region situated between the surface z = 0 and the PTF; Tv, av, temperature 
and thermal diffusivity of the medium in the region z> ~(t); ~ C, Y, thermal conductivity, 
specific heat capacity, and density of the medium, respectively; L, specific heat of the phase 
transition. 
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